1)

a)

$$
\begin{aligned}
& v^{2}=u^{2}+2 a s \\
& 1156=256+300 a \\
& 900=300 a \\
& u=3 \mathrm{~ms}^{-2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& s=\left(\frac{u+v}{2}\right) t \\
& 15 \theta=\left(\frac{16+34}{2}\right) t \\
& 15 \theta=25 t \\
& t=6 s
\end{aligned}
$$

PhysicsAndMathsTutor.com
c)

$$
\begin{array}{ll}
S & 75 m \\
U & \\
U m^{-1} & V^{2}=u^{2}+2 a s \\
V & v^{2}=256+45 \\
A & 3 m s^{-1}
\end{array} \quad v=\sqrt{706} .
$$

2)

a)

Horizontal forces in equilibriun

$$
\begin{aligned}
& T \sin (3 \theta)=2 T \sin (\alpha) \\
& \frac{T}{2 T} \times \frac{1}{2}=\sin (\alpha) \\
& \sin ^{-1}\left(\frac{1}{4}\right)=14.5^{\circ}(35 \theta)
\end{aligned}
$$

b)

Verticle forcos in equil ibrium

$$
\begin{aligned}
2 T \cos (14.5)+T \cos (30) & =2 g \\
2.8 T & =2 g \\
T & =6.99 \mathrm{~N}
\end{aligned}
$$

c)

PhysicsAndMathsTutor.com
3)
c)

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t} \\
& a=\frac{55-25}{4-\theta} \\
& a=\frac{3 \theta}{4}
\end{aligned}
$$

$$
a=7.5 \mathrm{~ms}^{2}
$$

4)

a)

$$
\text { moments })^{2}=\operatorname{moments}\left(r^{\prime}\right)
$$

$$
(25 g \times 2.4)+(m g \times 0.4)=(40 g \times 1.6)
$$

Remove g as a common factor

$$
6 \theta+\theta \cdot 4 m=64
$$

$$
0.4 m=4
$$

$$
m=10 \mathrm{ky}
$$

b)

moments) $=$ moments i

$$
\begin{aligned}
4 \theta g(4-x) & =\log (x-2)+25 g(x) \\
16 \theta-4 \theta x & =10 x-2 \theta+25 x \\
180 & =75 x \\
x & =2.4 \mathrm{~m}
\end{aligned}
$$

i) Plank assumed to be uniform so weight acts in centre of plank ($A X=B X=A B / 2$)
ii) Plank assumed to be a rod as it is assumed rigid, doesn't bend under force \& therefore remains straight
iii) Their weights act exactly on the ends of the planks
5) $S 1.6 \mathrm{~m}$
$U \theta_{m s^{\prime}} \quad V^{2}=u^{2}+2 a s$
a)

V —

$$
v^{2}=\theta+31.36
$$

A 9.8 ri $^{-2}$
$T X$
b)

$$
\begin{gathered}
78 \mathrm{mg} \\
\begin{array}{c}
\\
6 \mathrm{~kg} \\
\hline 5.6-\mathrm{s}^{\prime}
\end{array} \\
\theta_{-\mathrm{s}^{-1}} \quad(5.6 \times 78)+(0 \times 6)=V \times(78+6) \\
V=5.2 \mathrm{~ms}^{-1}
\end{gathered}
$$

c)

$$
\begin{aligned}
& S x \\
& u 5.2 m s^{-1} \quad v=u+a t \\
& v \theta m^{-1} \quad \theta=5.2+\theta .06 a \\
& A=\quad a=-\frac{26 \theta}{3} \\
& T \theta .06 \\
& F(1)-F(\hat{i})=m a \\
& (78+6) g-F=(78+6) x-\frac{26 \theta}{3} \\
& F=823.2+728 \theta \\
& F=81 \theta 3.2 \mathrm{~N}
\end{aligned}
$$

5)

d)

$$
\begin{aligned}
& s \\
& \text { U 5.2mi' } \\
& V 0-i^{\prime} \quad s=\left(\frac{u+v}{2}\right) t \\
& \text { A } x \\
& T \otimes .06 \quad S=\frac{5.2}{2} \times 0.06 \\
& S=\theta .156 \mathrm{~m} \\
& S=0.16 \mathrm{~m}(2 \mathrm{sf})
\end{aligned}
$$

6)

$$
\begin{array}{rlr}
A: S_{0} & =-5 i+10 j & B: S_{0}: 3 i+4 j \\
V & =2 i+2 j & V \\
=-2 i+5 j
\end{array}
$$

a)

$$
\begin{array}{r}
r_{A}=(-5+2 t) i+(10+2 t) j \quad r_{B}=(3-2 t) i+(4+5 t) j \\
(-5+2 t) i+(10+2 t) j=(3-2 t) i+(4+5 t) j
\end{array}
$$

same i value:
same j value

$$
\begin{array}{rlrl}
-5+2 t & =3-2 t & 10+2 t & =4+5 t \\
4 t & =8 & 6 & =3 t \\
t & =2 & t & =2
\end{array}
$$

At time $t=2$, they have same displacement from 0 , therefore they are in the same place at the same time, i.e. they collide.
b)

$$
\begin{aligned}
A: S_{\theta} & =-5 i+1 \theta j \\
v & =i+j \\
\text { new } r_{A} & =(-5+t) i+(1 \theta+t) j \\
\overrightarrow{A B} & =r_{B}-r_{A} \\
& =(3-2 t) i+(4+5 t) j-(-5+t) i+(1 \theta+t) j \\
& =(8-3 t) i+(-6+4 t) j
\end{aligned}
$$

6)

c)

$$
\begin{aligned}
& 14 \theta \theta \text { is } t=2 h \\
& \begin{aligned}
|\overrightarrow{A B}| \text { whet }=2 \quad \quad \text { distance not displacement }
\end{aligned} \\
& \begin{aligned}
\sqrt{(8-6)^{2}+(-6+8)^{2}} & =\sqrt{8} \\
& =2.83 \mathrm{~lm}(3 \mathrm{sf})
\end{aligned}
\end{aligned}
$$

d)
tire where component of $A B$ is θ

$$
\begin{aligned}
& 8-3 t=\theta \\
& t=\frac{8}{3} \\
& 2 \text { and } \frac{2}{3} \text { hours a frornoon }
\end{aligned}
$$

$$
1440 \text { hours }
$$

7)

a)

$F(\mathbb{1})$

$$
\begin{aligned}
& R+24 \sin \left(3 \theta^{\circ}\right)=2 y \cos \left(3 \theta^{\circ}\right) \\
& R+12=g \sqrt{3} \\
& R=g \sqrt{3}-12
\end{aligned}
$$

$F(-1)$

$$
\begin{gathered}
24 \cos (3 \theta)-2 g \sin (3 \theta)-F_{1-x}=m a \\
2 \theta .8-4.8-2 . \theta=2 a \\
8.99=2 a \\
a=4.5(2 \mathrm{af})
\end{gathered}
$$

b)

$$
\begin{aligned}
2 g \sin \left(30^{\circ}\right) & =4.8 \mathrm{~N} \\
0.4\left(2 g \cos \left(30^{\circ}\right)\right) & =6.8 \mathrm{~N} \\
4.8>6.8 & \therefore \text { motion down plane }
\end{aligned}
$$

7)

c)

$$
\begin{aligned}
& F(L)-F(\gamma)=m a \\
& 9.8-6.8=2 a \\
& 3.01=2 a \\
& a=1.5 \mathrm{~ms}^{-2}(2 \mathrm{sf})
\end{aligned}
$$

